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ABSTRACT

In this paper we present a class of multiresolution algorithms for fast application of

structured dense matrices to arbitrary vectors, which includes the fast wavelet transform

of Beylkin, Coifman and Rokhlin and the multilevel matrix multiplication of Brandt and

Lubrecht. In designing these algorithms we first apply data compression techniques to the

matrix and then show how to compute the desired matrix-vector multiplication from the

compressed form of the matrix. In describing this class we pay special attention to an

algorithm which is based on discretization by cell-averages as it seems to be suitable for

discretization of integral transforms with integrably singular kernels.
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1. Introduction.

In this paper wepresenta classof multiresolution algorithms for rapid application

of densematrices to vectors. A direct application of anarbitrary N x N dense matrix

to a vector requires N 2 operations. However, when the matrix-vector multiplication

stems from a discretization of an integral transform

(1.1) u(x) = / / K(x,y)v(y)dy,

where the kernel K(x, y) is smooth except possibly along curves, this product can

be performed to any prescribed accuracy with only O(N) operations.

In [1] Beylkin, Coifman and Rokhlin (BCR) present a wavelet based algorithm

(referred to as the "nonstandard form"), in which the matrix-vector multiplication

is performed by successive contributions from different scales. It starts with an

initial blurred (low resolution) output vector for u in (1.1), which is then upgraded

successively to higher and higher resolution, in much the same way as the pyramid

scheme in image comrpession.

In [2] Brandt and Lubrecht (BL) describe a multilevel matrix-vector multiplica-

tion which is viewed as performing part of the integration in (1.1) on coarser grids.

This is possible wherever the local smoothness of the kernel K(x, y) enables the re-

placement of its fine grid values by sufficiently accurate interpolation from coarser

grids.

In [7] we have presented a class of multiresolution algorithms for data compres-

sion. In the present paper we apply these data compression algorithms to matrices

as a tensor product of one-dimensional oeprators to obtain a multiresolution rep-

resentation of the matrix. Using this representation we derive a class of O(N)

matrix-vector multiplication algorithms, which includes the BCR algorithm [1] and

the BL algorithm [2] as particular cases. In describing this class we also pay special

attention to the algorithm which is based on discretization by cell-averages, because

it seems to be particularly suitable to kernels with integrable singularity.

2. Discretization and Reconstruction.

In this section we describe a class of discretizations of a function and the approxi-

mate inverse of these discretizations, namely the approximate recovery of a function



from its given discrete values;we refer to the processof recovery as reconstruction.

0
Let {x ° }, zj = j.h ° be a partition of the real line into uniform intervals {Ij }, Ij =

[x°_l,x°], of size h0. Let _(x) be a function which is concentrated around x = 0

and satisfies

(2.1a) /,(x)dx = 1,

mad define its scaled translates

l(x)(2.1b) _°(x) = _o _' _oo - j "

Given a function f(x) we discretize it by

o/(2.2) g -

Next let us introduce an approximate recovery of the function f(x) from its given

values ]0 = {]o} which we refer to as reconstruction and denote by R(z;f°). We

say that the reconstruction is r-th order accurate if

(2.3a) TO(x; f-0) = f(x) + O((ho)"), (accuracy)

provided that f(x) is sumciently smooth. We assume that the reconstruction is

conservative in the sense that

(2.3b) (T_(.;p), _p0)= _ (conservation).

Unlike the setup in [7], where the goal is to obtain maximal data compression, in

the present application to matrix-vector multiplication we want minimal number of

operations. Therefore we assume that 7_(.; ]0) is a linear functional of ]0 and that

_(x) satisfies a dilation equation

(2.4a) _(z) = 2 E at_(2x - t),
!



where the coefficients {at} satisfy

(2.4b) _ at = 1

(2.4c) Eatat+2m =0 for m # 0.

We note that relation (2.4b) is just a consistency condition. Given a set of {at), __, at =

1, it is shown in [4] and [81 that _(z) is determined by the dilation equation (2.4a)

up to a multiplicative constant. Hence _(z) is determined uniquely by adding the

normalization (2.1a) to (2.4a)-(2.4b). In Appendix A we show that condition (2.4c)

implies orthogonality of some matrices and thus reduces the number of operations

in our algorithm. In order for the set of functions {_,°(z)} to be orthogonal we have

to add another consistency relation (see [8])

t

in which case

(2.5b) @0_)_ It_112
_o 6i,j

where _i,j is the KrSnecker-_; i.e. _i,i = 1, 8ij = 0 for i # j.

In this paper we highlight the following three cases:

Case 1. Pointvalues.

(2.6a) _(x) =6(x)

where _(x) is Dirac's distribution. As pointed out by Strang [8] it satisfies the

dilation equation

(2.6b) _(z) = 2_(2x)

and thus

(2.6c) a0=l, at=0for_#0.



Note that the coefficients (2.6c) trivially satisfy the orthogonality relation (2.4c).

However

and thus (2.5) is not valid in this case.

The discretization (2.2) becomes

/ (:)"(2.7a) ]_/ = f(z)6 x _ j _o = f(z_),

i.e. the function f(z) is discretized by taking its value at the grid points {x_}. The

conservation property (2.3b) becomes

(2.7b) n(x° ;f-°) = _,

i.e. the reconstruction is an interpolation of the values {]_ } at the grid points Ix ° }.

Case ,_. Ceil-averages.

(2.8a)
1 -1 < x < o

¢p(x) X__,,o_(X)
0 otherwise,

satisfies the dilation equation

(2.8b) :(_)= :(2x)+:(2,+ i)

and thus

(2.Sc)
1

ao = a-, = "_, at = Ofor _ # -l,O.

The discretization of f(z) in (2.2) becomes

(2.9a)

0

g = S(xlXt_,,0) _0 = g o
j-I



i.e. f(x) is discretized by taking fo to be its average in the interval 1°. The

conservation requirement (2.3b) becomes

(2.9b) r/=o n(_;]°)dx = ]o.
1

Jz1_,

Let us denote by F(x)

_0 Z
(2.10a) F(x) = f(_)d_,

the primitive function of f(x)

(2.10b)

and observe that

(2.10c)

It is easy to see that

(2.11)

d F(x) = f(x)

F( o)= ho fT.
i----1

n(_;fi) = dI(_; F°),

where I(x;F °) is any interpolation of the values F ° -- F(x °) (2.10c), satisfies

the conservation requirement (2.9b). This reconstruction procedure is r-th order

accurate (2.3a) if the interpolation technique in (2.11) satisfies

(2.12) dI(x;F°)'- dr(x)+O((holr)= f(x)+O((ho)r)

for sufficiently smooth f(x).

Case 3. Orthogonal Wavelets.

Let _(x) be a function which is determined by the dilation equation (2.4a), with

coefficients that satisfy (2.4b)-(2.4c) and (2.5a). Thus we assume orthogonality of

5



the set {:0} (2.5b). In the context of this paper it is most natural to describe
waveletsby first specifying the reconstruction to be a linear combination of {:0},

i.e,

(2.13a) T_(x; f -° ) - _ a,:°(x)
i

and to leave the discretization (2.2) to be determined later. The conservation re-

quirement (2.3b) becomes

(2.13b) a 0= =
i

Using the orthogonality (2.5b) we get

h0

(2.13c) a_= 11:112_.

Thus

h0
f; :_(x).(2.14) _(x;p)-11:112 _ _ 0

t

Using the theory of approximation by translates Strang [8] shows that in order for

the reconstruction (2.14) to be r-th order accurate (2.3a) we have to impose the

following condition on the coefficients {at},

(2.15) _--_.(--1)t_mat = 0 for rn--0,1,... ,r--1.

Daubechies [4] showed that in order to satisfy the conditions on {at} listed so

far, one needs at least 2r nonzero coefficients, and that the set of exactly 2r nonzero

coefficients is unique. For r = 1 this solution is given by (2.8c), i.e. :(x) is the

box function (2.8a). For r _> 2 the resulting :(x) is necessarily nonsymmetric;

the smoothness of :(x) increases with r, but only by half a derivative (approxi-

mately) each time. Beylkin, Coifman and Rokhlin in [1] impose an additional set

of requirements on {at}, namely that there exists an integer rr so that

/:(x + r,.)x'ndx = 0 for m = 1,2,... ,r - 1;(2.16a)
J



This implies

(2.16b) = (f,_0)= f(x o + rrho)+O((ho)r),

which shows that the integration in (2.16b) can be approximated to r-th order

accuracy by a single point quadrature. They show that there is a solution to the

extended set of conditions with 3r nonzero coefficients {at}.

We remark that for large r, the discretization implied by (2.16b) is close to that

of pointvalues.

3. Multlresolution Algorithms for Data Compression

In this section we consider a situation where we are given No values

(3.1a) ]0 .f _?0 I. N0= tJjJj=l, No = 2 n°, no integer,

which represent a discretization (2.2) of some function f(z) corresponding to a

uniform partition of [0, 1],

0(3.1b) x i = j . ho, 0 < 3" < No, h0=l/N0.

To simplify our presentation we assume for the time being that f(x) is periodic

with period 1, so that values outside [0, 1] are known by periodic extension.

We consider the set of nested grids

k
(3.2a) {x_)Y_l, xj =j.hk, hk=l/Nk, Nk=2-kN0;

for 0 < k < L, where k = O, the original grid, is the finest in the hierarchy and

k = L, L < no, is the coarsest. The coarser (k + 1)-th grid is formed form the k-th

grid by removing the grid points _x2j_1"k Ij=I,_N_.thus

(3.2b) _k+l = z_i, 0 < j < Nk+l, Nk+l = Nk/2.

To each of the nested grids we associate a discretization

(3.3a) ]k l_k _Nk= = (:,



k is properly scaledwhere _,j

(3.3b) _)(x) = 1 (x )E_ E-J

It follows from the dilation relation (2.4a) that

(3.3c)
k-I

l

and consequently

-k -- 1
(3.3d) f_ = _ atf_j+t = Z at-2Jf_-l' 1 <_ j <_ Yk

I t

We rewrite (3.3d) in the matrix form

(3.4) fk = Hf_-l,Hij = aj-2i, HNk × 2N}.

Given f0 we use (3.4) to successively compute fl,... ,fL. Observe that these

values are not computed from the definition (3.3a) but from the dilation relation

(3.3d); thus no explicit knowledge of f(x) is required.

Given fk we can use the reconstruction re(x; f-_) in order to get an approximation

fk-1 to the discrete values fk-1 of the finer level by

k-l), l<j<2Nk=Nk_l(3.Sa) ]_-' = <re(.;]_), _ _ _ .

As we have mentioned earlier, in this paper we take 7_(.; f) to be a linear functional

of f. Hence (3.5a) can be epxressed in the matrix form

(3Zb) ]_-' = R] _

where R is an 2Nk × Nk matrix. Because of (3.3c) and the conservation property

of the reconstruction (2.3b) we get that

Z ~k -- 1

(3.6a)
t t

= (re(.;i_),_ *-'
g
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or in matrix form

(3.6b) H fk-1 = .{k.

It follows then from (3.5b) and (3.6b) that for any vector ]6

]6 = H f6-1= HRf 6,

which shows that

(3.7a) HR = I,

and consequently

(3.7b) H(I- .RH) = H- (HR)H = H- H = O.

We turn now to examine the error e k-1 in the prediction ]6-a (3.5)

(3.8a) ek-1 = /k-I __ /k--1 ----. /k-1 __ R/6 = (1- RH)f 6-1 .

_From (3.7b) it follows that

(3.8b) He k-1 = O,

which shows that only N6 out of the 2N6 components of e k-1 are independent

quantities. In order to get rid of this redundancy in e 6-1 we introduce the Nk x 2Nk

matrix G

(3.9a) Gij : (--x)J+lo_2i-l-j, (G)NJ,×2Nk

which satisfies

(3.9b) HG* =0.



In Appendix A weshow that it followsfrom the orthogonality condition (2.4c) that

(3.10a) HH* = GG* = [o_12. I,

(3.10b) H*H + G*G = [al 2. I,

(3.1Oc) I_1_ = _,_.

Using (3.10b) and (3.8b) we now get that

(3.11a) e__ 1 _ 1 (H*H + G*G)e k-_ 1 G.(Gek_l) = i__G,d ki_1_ -i_1 _ ,

where

(3.11b) d k = Ge k-a

is a vector of Nk components. Combining (3.11) with (3.8a) we get

(3.12) ]k-, = 12-, + ek-1 = n.f_ + [__Fa.d k,

which is the basis for the following data compression algorithm:

Given a sequence of No numbers u = {ui}N°,, we set

(3.13a) f0 --u

and execute

(3.13b)

Do for k = 1,2,... ,L

fk = H fk-'

ek-I = ]_-1 _ Rfk

d k = Ge _-1

thus arriving at the multiresolution representation U MR of U

(3.13C) u MR= {fL,(dL,... ,d')}.

10



Starting from the multiresolution representationwe recover u by (3.12), i.e.

(3.13d) Do for k = L,L- 1,... ,1ik-1 R_k. I G.d k
.t = .I "r _]-g_ ,

(3.13e) u = ]_.

The number of quantities in the multiresolution representation u Mn (3.13c) is

No as in the original vector u (3.13a). The difference is that the quantities {d_}

are expected to be small in absolute value wherever the underlying function f(x)

is adequately resolved on the k-th grid. Thus data compression can be achieved by

setting to zero elements of d k which fall below some tolerance ¢k. See [7] for more

details.

In Appendix A we present the form of the data compression algorithm (3.13)

when we do not assume the orthoginality condition (2.4c).

In the following we present the details for the three cases that we highlight in

this paper.

Case 1. Pointvalues.

TC.(z; f_) is the interpolation (2.75). For reasons of symmetry we consider even

order of accuracy r 2s and take T_(x; fk) in k k= [x j_l, x i ] to be the unique polynomial

of degree (2s - 1) that interpolates ]k at the gridpoints k x k{xj-s,.", j+s-l}" In (3.5)

we get for l<i<Nk

(3.14a)

(3.145)

= =]?
$

" --kitcA= = Z +/t_,)
/----1

where

(3.14c)
{ r=2=>/91 -- 1

r =4=> j31 = 9 1,-_, #2 = -- ,-_

r=6=>13, = ,s__2o_2 = -2___55f_2 = _
256 _ 556 ' 256 "

11



In (3.4) and (3.9a) weget

(3.15) Hij = 52i,j, Gij = ,52i-l,j.

The multiresolution representation (3.13c) is obtained by:

Set

(3.16a) ]0 =_

Do for k = 1,2,... ,L
(3.16b) /_ =/_/--', 1 _< i _< Yk,

d_ fk2i-___ - Et=l/_t(/tq-g--1 + j_k.._g), l<i<Nk.

u is recovered from the multiresolution representation u MR by

(3.16c)
Dofork=L,L-1,...,1
f_[-' = fi k, l < i < Nk

1_5', = E;=I flt(fik+e-1 + LLt) + d_, 1 <i < Nk,

(3.16d) u = f0 i
=

|

Case 2. Cell-averages. !

iUsing interpolation of order (2s + 2) as above for the primitive function in (2.I1)
i

we obtain a reconstruction of order r = 2s + 1. In (3.5) we get for 1 < i < Nk !

!i_,---i= (M_)2,-, = L_+ _(3.17a)

(3 17b)

where

(3.17c)

and

(3.17d)

i
dl

g=l

12



note that z_ - 0 for r = 1.

In (3.4) and (3.9a) we get

1

(3.18) Hi I - _(52i,1 + 52i-aj),
1 5

Gii = 5( 2i-lj - 52ij).

The multiresolution representation (3.15c) is obtained by:

Set

(3.19a) p =_

(3.19b)

q
Do for k=l,2,...,L
j_k = I (,Fk-1_w2i-1 + f_/-1), 1 < i < Nk

<_= ]t,=_- L' - E;=l _,(,_+,- L%), l<i<Nk

u is recovered from the multiresolution representation u MR (3.13c) by

(3.19c)

Do for k = L,L- 1,... ,1

Do for i = 1,2,... ,Nk

/x= EL, -r,(_k+,- ],__,)+ <_

]_:A= Lk+ A, ]_7' = Lk- _,

(3.19d) u- ft.

Case 3. Orthogonal Wavelets

The reconstruction (2.14) for the k-th level is

(3.20a)

and (3.5) becomes

Nk

-k k
hk E f_ ¢21(x)'

T_(x;fk) = I1_ = i=1

hk

_k-1 __ (R/k)i = (_-_(.;fk),_p/k-1) _ ]h,9112

13

Nk

j--1



Using (3.3c) and (2.5b) we get that

Recalling that hk = 2hk-1 we get

(3.20b) R = 2H*.

Using (3.10) with (2.5a) to express the error in (3.8a) we get that

(3.21a) e k-1 = (I- RH)/k-_ = (I- 2H*H)f k-' = 2G*Gf k-' = 2G'd k

(3.21b) d k = Gf k-1.

The coefficients {v/2._e}, 1 < g < 2r of Daubechies [4] are given in the following ta-

ble: Table 1.

i

1

4
i
!

i
i

r=2 r=3 r=4 r=5 r=6

v/2_1 .482962913145 .332670552950 .230377813309 .160102397974

v_2 .836516303738 .806891509311 .714856570553 .603829269797

v/2_3 .224143868042 .459877502118 .630880767930 .724308528438

v/'2_4 -.129409522551 -.135011020010 -.027983769417 .138428145901

v_s -.085441273882 -.187034811719 -.242294887066

V/2_6 .035226291882 .030841381836 -.032244869585

v_7 .032883011667 .077571493840

V_s -.010597401785 -.006241490213

v_9 -.012580751999

v_1o .003335725285

V/2_l 1

g/2_l 2

.111540743350

.494623890398

.751133908021

.315250351709

-.226264693965

-.129766867567

.097501605587

.027522865530

-.031582039318

.000553842201

.004777257511

-.001077301085

The multiresolution representation (3.15c) is obtained by:

14



Set

(3.22a) _ = u

Do for k = 1,2,... ,L

Do for i = 1,2,... ,Nk

(3.22b)
Lk 2r -k-I= Et=l atf2i+t

d k = 2rE,=,

u is recovered from the multiresolution representation u MR by:

Do for k = L,L-1,... ,1

Do for i = 1,2,... , Nk

-- l" -k

]k_-I ._ 2 Et=l[Ol2t_lfi_! + O_2tdik+,]

r -k= 2 -

(3.22c)

(3.22c) u = f-o.

4. Matrix-vector multiplication.

In this section we describe a multiresolution algorithm for the multiplication of

an N0-vector b by an No x No matrix A, which is based on the data compression

of A; we denote the result of this product by the N0-vector c,

(4.1) Ab=c.

We start by presenting a tensor-product extension of the one-dimensional data

compression algorithm (3.13) to the matrix case, in which each column and row of

the matrix are treated as one-dimensional vectors. Let us set

(4.2a) ,'i ° = A

and define the Nk x Nk matrix fik by

(4.2b) fik = Hfi, k-lH,, k = l,... ,L,

15



where H is the Nk x 2Nj, matrix defined by (3.4).

Given ._k we form the prediction ii, k-I by

(4.3a) ,_k-, = R._kR,,

where R is the 2Nk x Nk matrix in (3.5). It follows from (4.2b) and (3.7a) that the

error in this prediction E k-l,

(4.3b) Ek-1 = /tk-1 _ irk-1 = 2k-1 _ R/tkR,

satisfies

(4.3c) HEk-IH* = H.,4k-_H* -(HR).,4k(HR)* = i_ -.,4k = O.

Consequently, using (3.10b) and (4.3c) we get

Ek_ 1 1
- icrl4 (H*H + G*G)Ek-I(H*H + G'G)

(4.4a)
= I-_]4(G*D_G + GD_H + H*D_G),

where the Nk × Nk matrices k 3{Di }i=1 denote

(4.45)

Thus

(4.5) = RA._R * + [a*(DkaG + D_H) + H*D_G], :

and we get the following data compression algorithm for the No × No matrix A:

Set

(4.6a)

(4.6b)

.4°=A

Do for k = 1,2,... ,L

fik = Hfl.k-l H,

Ek-1 = _k-1 _ RftI, R,

D_ = GEk-IG *, D_ = GEk-IH *, D_ = HEk-IG *.

16



The multiresolution representationA MR of A is

(4.7a) AMR -L L 3= {A ,({D i )i=l,...,{D_)_=l)).

It is convenient to store A MR in the form

(4.7b) A_R =

1
D1

1
D3

No

2
D 1

2
D3

1
D2

2
D2

No

which also shows that the number of elements in A MR is (N0)_, as in the original

matrix A = _0.

Starting from the multiresolution representation A MR (4.7), we recover the orig-

inal matrix A by (4.5), i.e.

(4:8a) Do for k= L,L-1,... ,1
2 k-1 = RA.kR" + I--_I,[G*(D_G + D_H) 4- H*D_G],

(4.8b) A = _0.

The elements of k 3{Di }i=] are proportional to the local error in predicting ._k-1

from the k-th level of resolution (4.3b). Therefore these elements are small wherever

the discretized function is properly resolved on the k-th grid. Data compression can
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Figure ib
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Figure 2b
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be achieved by setting to zero elements of {Dr 3}i=1 which are smaller in absolute

value than some tolerance ¢k.

In Figures la,b and 2a,b weshow results of data compression of two matrices

which are the first two examples in the BCR paper [1]. In Figures la,b we show

the multiresolution representation A MR (4.7b) of the matrix

(4.9)
{ ._. iCj

Aij = I-j

0 i=j

with No = 512. The discretization in this calculation is assumed to be by pointval-

ues, i.e. H and G are (3.15) and the reconstruction is by interpolation. We take R

to be (3.14) with r 6. Entries of k s= {Di }i=1 which are larger in absolute value than

¢k = 10 -7 are marked in black. The calculations in Figures la and lb differ in the

treatment of boundaries: In Figure la we use periodic boundary conditions while

in Figure lb we use one-sided interpolation near the boundaries. The compression

rate (ratio between (No) 2 to the number of entries that are larger in absolute value

than 10 -7) is 6.72 for the periodic case in Fig. la and 8.57 for the one-sided in-

terpolation at boundaries in Fig. lb; the compression rate for the wavelet based

algorithm in [1] is 7.33.

In Figures 2a,b we repeat the calculations of Figures la,b for the matrix

(4.10) log li-No/2!-log [j-No�2[Aij --= I-j
0

for i ¢ j,i 7_ No/2,j ¢ No�2

otherwise.

Here the compression rates are 6.11 in Fig. 2a and 7.60 for Fig. 2b; the correspond-

ing BCR result is 7.50.

We remark that the "BCR results" above are quoted from [1] in which a different

normalization in (3.3) is used. These results show that the BCR compression rates

are of the same order as the ones in Figures 1 and 2.

We turn now to describe how to compute the product Ab = c (4.1) from the

multiresolution representation A MR (4.7b) of A. Multiplying (4.5) by a vector bk-1
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of Nk-1 components we get

(4.11a)
fi, k-lbk-1 = RAk(R*b k-_) + [-_{G*[D_(Gb t-1 ) + D_(Hbk-1)]

+H*Dg(Gbk-1)},

from which we see that if for all k we define

(4.11b) bt = R*b k-1

(4.11c) c k - ,4.kbk,

then (4.11 a) becomes

(4.12)
1

c*-_ = Rc k + _d-_{a*[Df(ab_-_) + Dk2(Hb k-' )] + H*Dk3(Gb k-' )}.

It follows therefore that given the (compressed) multiresolution representation A MR

(4.7b) of A we can calculate c = Ab by:

Set

(4.13a) b° = b,

(4.13b)
Dofor_=l,2,...,L
s t = Hbk-*,t k = ]-_Gb k-l,

b k = R* b_-1

evaluate by direct multiplication

(4.13c)

and execute

(4.13d)

cL = ._L b L,

Do fork=L,L-1,...,1 H*_Dktk_l' *(D_t t + D_s 1') +ck-1 = R ck + i'd-_[G _ 3 JJ,
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(4.13e) c = c°.

Relation (4.11b) can be thought of as stating the proper scaling of the input

vector as we go to a coarser grid. After preparing the values of b1' for all the levels

(4.13b), we start the computation of c = Ab by calculating its lowest resolution

version cL = A-LbL in (4.13c). Then we proceed in (4.13d) to successively upgrade

ck by first using the reconstruction technique to predict the value _:lc-1 = Rc I, for

the finer grid and then correct this prediction wherever needed by the term in the

curved brackets in the RHS of (4.12).

If the number of elements in k 3{Di }i=1 that are larger in absolute value than the

tolerance ¢k is O(Nk), and the matrices H, G and R are banded (with constant

width), then the number of operations for each k in (4.13b) and (4.13d) is O(Nj,),

and consequently the number of operations in the multiplication algorithm (4.13)

is O(No).

It is important to observe that due to the tensor-product nature of this algorithm,

the operations on the rows are independent of the operations on the columns. This

enables us to use H,, Gz and Rx on the left and different Hy, Gv and Ry on the

right. Modifying the relations (4.2b), (4.3b) and (4.4b) to be

(4.2b)' A.k= Hxdk-'H$,

(4.3b)' k-1 -k-i -k •E = A - RzA Ry,

(4.4b)' r)k _ (=,__k-l(-:_, nk c:,_ _k-l_. H Ek-IG *,--1 -,-.x_ ,-'_, ,--2 = ,-.x,-, --_, Ds_ = _ y,

we now get the following multiplication algorithm:
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Set

(4.13a)'

(4.13b)'

(4.13c)'

Do for k = 1,2,... ,L

s k_ I H bk-1 t k I f=, _t-_
- i,_1----__ , = _,_y,,

b k = R_ bk- 1

cL = _L b L,

(4.13d)'

(4.13e)

Do for k = L,L-1,... ,1
c k-' = Rxc k + T_-ff[G:(D_t k + D_s k) + H;(Dkatk)],

C_C 0 .

This extra freedom in algorithm (4.13)' can be utilized for example to discretize

the integral transform (1.1) by pointvalues in x and cell-averages in y.

Next we present details for the three cases that we highlight in this paper.

Case 1. Pointvalues.

It follows form the definitions of H and G in (3.15) that (4.2b) and (4.3b) become

(4.14a)

(4.14b)

A k. -k-1,,j = A2i,2j, 1 < i,j <_Nk,

(D_)i,j k-1 k k-1 k k-1= E2i_1,2j_ 1, (D2)i,j = E2i_l,2j, (D3)i,j = E2i,2j,

l <_i,j <_Nt.

Using the definition (3.14) of R in (4.13b) we get

$

bk (R*bk-1)i bkT1 31- E D /bk-I k--1= =- Pgl, 2(i+l)-I nt- b2(i-t)-l)' 1 < i < Nk.
/=1

Algorithm (4.13) can be expressed in this case by:
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Set

(4.15a) b° =b

(4.155)

(4.15c)

Do for k=l,2,... ,L
k k-l, k k-1s i =b2i t i =b2i_l, l<i<Nk,

bik k k= si + E't=l _t(t_+t + t,-t), 1 < i < Nk,

C L -.- ALbL '

(4.1 d)

(4.15e)

Do for k= L,L-1,... ,1

Do for i = 1,2,... ,Nk

ok21 = E_=I _t(Cki+t -- Ci_t )k+ (D_t k + D2 skk)i

c_ -1 = cki + (Dk3tk)i,

C _--- cO;

here r = 2s.

While writing this paper we found out that algorithm (4.15), although derived

differently, had already been published in [2]. Moreover, it was extended further in

[3] to integral transforms with an oscillatory kernel and to many-body problems.

Case 2. Cell-averages.

It is convenient to introduce the operators # and 5,

1 1

(4.16) #vi = _(vi + vi-1), $vi = _(vi- vi-1),

and use the convention that, when applied to two-dimensional arrays, superscripts

x and y denote operation on the first and the second index, respectively. It follows

from the definition of Y and G in (3.18) that (4.25) and (4.35) become

(4.17a) fi.k , z, v2k-1,,j =t _ _ 2i,2j, l_<i,j<_.Nk,

(4.175) =  XZ E ;1, = =

l <_i,j<_Nk.
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Using the definition (3.17) of R in (4.13b) we get

$

(4.18) b_ : (n'bk-1)i -- 2[#bkt 1 -t- E _,t(_b2(i+t)k-1

l=l

_ ,_b k-_ _1
" 2(i-/) JJ"

Algorithm (4.13) can be expressed in this case by:

Set

(4.19a) b° = b

(4.19b)
Do for k= l,2,... ,L

k _ k-1 k k-1
s i _2#b2i , t i 2_b2i , 1 <i<Nk,

b_= _,"+ EL, -y,(t,"+,-¢_,), 1< i < N,,,

(4.19c) cL = filLb L,

(4.19b)

Do for k = L,L - 1,... ,1

Do for i = 1,2,... ,Nk

k (D_tk)iw=c i +

- - D2s )iz = ELI"Y,(_,"+, _ _ kci_t) (D_t k +

k-1
C2i_l -- W "JVZ

_-_C i _--W--Z_

(4.19e) c=c°;

herer =2s+l.

Case 3. Orthogonal waveletsl

In this case H and G are defined by (3.4) and (3.9a) and the Daubechies co-

efficients (see Table 1). Since R = 2H* (3.20b) and HG* = 0 (3.9b) we get in

(4.4b)

(4.20) D_=Cftk-lC* ' D_=Gftk-'H *, Dk3 = Hlk-'a*;
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thus for l_<i,j <Nk

(4.21a)

(4.21b)

(4.21c)

(4.21d)

2r 2r

t,l = °lt°_mA2i+t,2j+m,

/=1 m=l

2r 2r

= (--1) o_to_mA2i_l_t,2j_l_ m,

l=l m=l

2r 2r

= °_mA2i-1 --l,2j+m '

/:I m=l

2r 2r

= I_lA2i+l,2j-1 -m"

m=l t=l

Using R = 2H* in (4.13b) we get that

(4.22) bk = 2Hb k-l, s k = bk.

Algorithm (4.13) can be expressed in this case by:

Set

(4.23a) b° = b,

Do for k = 1,2,... ,L

Do for i = 1,2,... ,Nk

2r k-12E,=,= c_b2i+t

x--_2r / l_ta bk-1t_ = 2 2._t=1 k- ) t 2J-l-t,

(4.23c) c L "- fiiLb L,

Dofork=L,L-1,...,1

Do for i = 1,2,... ,Nk

(4.23d) k-I ," k k k k k
c2i_ 1 = 2 _t=1 {a2t-l[ci-t + (D3t )i-t] + o_2t(D1 t + D_bk)i+t},

c_i = 2 E_ , {a2t[c_ t + (Dkstk)i-t] - a2t-'(D_ tk + D_bk)i+t}'

(4.23e) c = c °.
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Algorithm (4.23) is identical to the BCR algorithm (the "nonstandard form") in

[1].

5. Stability and Efficiency.

In this section we examine the stability of the data compression algorithm (4.6)-

(4.8) and discuss the efficiency of the matrix-vector multiplication algorithm (4.13).

From (4.3b) we get

fi ° = E ° + RfilR * = E ° + RE1R * + R_.A2(R2) * = ...

L-I

(5.1) = EO+ _ RkEk(Rk), + RLA,_(nL),.
k=l

Applying data compression to A MR (4.7) we get truncated matrices/_k which result

in .50 in (5.1). Denoting

(5.2a) Ek ____k _ E _

we thus get

(5.2b)

L-I

Ao _ _o = Eo+ _ nkE_(n_)*,
k=l

which shows that each column and row in £k are amplified by R _. For discretization

in [0,1] R k in (5.1)-(5.2) should be interpreted as

(5.33) R k = R1 • R2"" Rk

where R,n is the 2Nm x Nm matrix in (3.5); for discretization in (-¢x_, o¢_) R is an

infinite matrix and R k should be interpreted as the k-th power of R, i.e.

(5.35) n k = (n)k.

Let e denote the unit sequence corresponding to a partition of the real line into

intervals of size 1 with integer endpoints,

et = _t,0, --oo < _ < oo,
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and consider successiveapplications Rke, k ---* oo. For example when R is the

piecewise linear interpolation (3.14) with r = 2 we get

Table 2.

x=-I x=O x= l

e o 1 0

1 1 ' 0Re 0 _

I 2 3 1 3 2 I 0R 2e 0 0 _ _ -i _ "i "i

1 2 3 4 5 6 7 1 7 6 S 4 3 2 1 0R3e 0 0 0 8 s 8 s 8 8 8 s 8 e 8 8 8 8

0

0 0

0000

Clearly here

(5.4a) (Rke)j = r/(2-kj),

( 4b)
j" 1-I=1 I=1-<1

r/(x) l, 0 otherwise

We observe that rt(x), the "hat function", is the solution of the dilation equation

(5.4c) T/(x) ={q(2x- 1)+ r/(2z)+½r/(2x + 1),

the coefficients of which are given by at = (Re)t.

The limiting process Rke, k ---, _, has been studied by Deslauriers and Duboc

[5] and Dyn, Gregory and Levin [6] for interpolating R, and by Daubechies [4] for

orthonormal wavelets, R = 2H* (3.20b)' As in the example above they found that .--

t

_: the limiting process is convergent in the sense that __
!
|

_ OO _=

(5.5a) lim _ (Rke)jX[o,,)(2kx -j)= r/(x),
k----* oo

j_--OO

where X'[0,1) is the characteristic function of [0, 1) and the convergence is uniform

in x. The limit r/(x) is a continuous function of compact support which satisfies the
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dilation equation

(5.55)

and

(5.5c)

l

at = (Re)l,

q_-k = (r/,2kqa(2 k " _j)) = (R'e)/.

Since r/(x) is continuous and of compact support it follows from (5.5a) that

oo

(5.6a) sup,{2-' I(Rke)il} < const, sup./,kl(R'e)il < const.

Consequently we get for the matrix norms

(5.6b) IIRkll_ S C_, IIR'IIa S 2k" Ca.

We return now to the stability analysis (5.2) of the data compression algorithm.

Setting to zero elements of D_ (4.7) which fall below the tolerance ek we get

(5.7a)

(5.75)

lEVIS const "ek+x,

IIE'II_ <f_'Nk'ek+l, p= 1, C¢.

For each term in (5.2b) we now get for both the L1 and Loo norms that

(5.8a) IIRkEk(Rk)*lt < IIRkll_llRkll_. _. N, "_k+, S _C_C, . No "_,+,

---C.N0._k+I,

and consequently

L
1 ^0

(5.Sb) _ollA - -PII-< C. _,;
k=l

this shows the stability of the data compression algorithm.

In the numerical experiments shown in Figures la,b and 2a,b for the matrices

(4.9) and (4.10) we have used ek = e = 10 -_ (here h0 = 1) and computed

(5.9) _,(_) = II(A° - A)bllp/llbllp,p= 1,_
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for a randomly generated vector b; for purposes of comparison we also computed

br(O ) which corresponds to running the program with _ = 0 and thus shows the

effect of round-off error. In Table 3 we show the results for the case where R is the

Table 3.

interpolation (3.14) with r = 6.

(4.9)

(4.10)

case boundary ratio

periodic 6.72

one-sided 8.57

periodic 6.11

one-sided 7.60

#1(10 -7 ) #oo (10 -7 ) #1(0) #o_ (0)

6.95 x 10 -6 4.96 x 10 -6 1.09 x 10 -7 1.33 × 10-:

7.52 x 10 -6 4.41 x 10 -2 9.34 x 10 -7 2.77 x 10 -5

1.62 x 10 -6 1.82 x 10 -8 4.76 x 10 -8 9.15 x 10 -8

1.46 x 10 -6 2.04 x 10 -6 6.46 x 10 -7 8.64 x 10 -6

It seems to us that the convergence of Rke to a continuous r/(x) stems from the

conservation property HR = I and the accuracy requirement (2.3a) with r :> 2.

Therefore we expect the reconstruction from cell-averages (3.17) to also satisfy the

relations (5.5), (5.6). In Appendix B we prove convergence of the limiting process

(5.5a) for reconstruction from cell-averages under the assumption that the corre-

sponding limiting function for the interpolation in (2.11) is continuously differen-

tiabie.

In Table 4 we repeat the calculation of Table 3 for the reconstruction from cell-

averages (3.17) with r = 5.
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case boundary

periodic
(4.9)

(4.10)

one-sided

periodic

one-sided

ratio

5.71

6.71

6.29

7.53

Table 4.

_,(10 -7) _,_(I0-7) _i(0) #_(0)

6.03 x 10 -7 7.83 x 10 -7 5.66 × 10 -7 4.39 x 10 -7

1.03 x 10 -6 1.55 x 10 -6 9.87 x 10 -7 9.5'2- × 10 -7

4.00 x 10-7 5.97 x 10-7 3.50 x 10 -7 3.06 x I0-r

2.76 x 10-7 6.09 x 10-7 1.73 x 10 -7 3.06 x 10-7

We turn now to discuss the question of efficiency. If a(x, y) is a function that has

isolated regions of large variation then its discretization on a uniform grid results in

a matrix A which is actually over-resolved in most of the computational domain. In

this case it pays to use multiresolution algorithms as they offer the effÉciency of an

adaptive grid method without the complicated logics that is associated with such a

calculation. In applying multiresolution algorithms to matrix-vector multiplication

there is another important consideration: The computational effort of preparing the

representation A MR (4.7) may be greater than a direct application of the matrix

A to a single input vector b. Therefore it makes sense to use algorithm (4.13) only

when the computational task calls for an application of the same matrix to many

input vectors and/or there is apriori knowledge of the location of regions of large

variation.

An important class of applications is the calculation of integral transforms (1.1)

j_0 1
(5.10) u(x) = K(x,y)v(y)dy,

where the kernel K(x, Y) is smooth except for curves y,(x) at which it has integrable

singularity. To each grid of size hk we associate a finite-dimensional approximation

Kk(x,y) to the kernel K(x,y)

(5.11a)

(5.11b)

N_ N_

Kk(x'u)= Z
i=1 j=l
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and a finite-dimensional approximation uk(x) to the output u(x)

(5.12a)

1 N_ Nh

_0 -k -k ku_(x)= K_(x,vl,(_l_v = _(h_ F_,g,_vj),7,(_),
i=l j=l

-k 1 f01(5.12b) ,j = _ v(y)_](y)dy.

Here r/(x) is the limiting function in (5.5) and

i
i
I
|

I
!
i
i::

(5.13a) ,_(z) = 7(_ - _).

/,From (5.5c) with k = 0 we get that

(5.13b)

and thus by scaling

r_(x)_(x - j)dx = 5o,1

(5.13c) <_,_> = _,._.

Using (5.13c) in (5.12a) we get

Nk

(5.14a) fi_ = hk E _x'-'kijvj-k

j=l

(5.14b) fi/k _ (uk,_k).

l<i<Nk,

Applying the data compression algorithm to the matrix k ° and setting to zero

elements of {D_) that fall below ck we get from (5.8b) that

L

(5.15a) ho[[R ° - R°ll < c _ ek.
k=l

It follows therefore that

(5.15b)

L

II_° - ,_°II= llho(k °- R°)o°II _<c(_-_ Ek)llo°ll.
k=1
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The prediction error E_ -a (4.3b) can be estimated by

(5.16a)
r (") Cr fir., h .,,rtc(r) 1

IEik/al < C,.(hk) '_ii = -ff;t_,.':' k) iS J

where

(5.16b) ¢(,.) .IO"K O"K I)i/.
i_ = ( -_-z, I+1 or---7-

If the kernel K(x,y) is such that _) at a distance A from the singularity can be

bounded by

CK
(5.17a) . (r) < ___ij - A"

then it follows from (5.16) that except for a band of width B around the singularity,

all the elements of E k-1 satisfy

C,C_-
(5.17b) IE_--ll <-- B r

Choosing Ek = E in (5.15) and

.c, cK)_
(5.18a) B=(_

}i=1 (4.7) iswe get that the number of nonzero elements in the compressed {/9/_ a

proportional to 2BNk, and the cumulative error (5.15b) is

(5.18b II_° - a°ll _ Clio°lie log2 N0.

This error can be made arbitrarily small by taking a wider band B in (5.18a).

Beylkin, Coifman and Rokhlin [1] point out that the estimate (5.17a) is satisfied

by the kernels of Calderon-Zygmund operators and pseudo-differential operators.

In this case, taking into account the actual decay of the prediction error away from

35



the singularity to sharpen the estimatesin (5.7), the log2No factor in the RHS of

(5.18b) can be removed.

6. Summary and Conclusions.

In this paper we have presented a class of multiresolution algorithms for data

compression and matrix-vector multiplication. In constructing this class we have

introduced subclasses of different discretizations. Each subclass corresponds to a

particular choice of _(z) in (2.2); q0(z) is assumed to be a solution of a dilation

equation and to satisfy the orthogonality condition (2.4c). Members of each sub-

class of discretization correspond to different reconstruction procedures 7¢(x; f); the

reconstruction is assumed to be conservative (2.3b) and to depend linearly on the

discrete data ].

We have paid special attention to the subclasses of discretization corresponding

to pointvalues and cell-averages because of their simplicity. The wavelet based al-

gorithms [1] are also included in this class but in a "diagonal" fashion: In each

subclass of discretization corresponding to a qo(x) which satisfies the moment con-

dition (2.15), there is a wavelet based algorithm corresponding to the reconstruction

R = 2H* (3.20b). For example the wavelet based algorithm for r = 1 (Haar basis)

is in the subclass of cell-averages.

The rate of compression and the stability properties are about the same for all

algorithms of this class with the same order of accuracy. What matters therefore in

choosing an algorithm is simplicity, operational count and suitability to the particu-

lar application; under simplicity we also include handling of boundaries. Comparing

wavelet based algorithms to those of pointvalues and cell-averages of the same or-

der of accuracy r, we find the wavelet based algorithm to be considerably more

expensive because of the larger support (2r) and lack of symmetry and that the

handling of boundaries is not as simple. In comparing cell-averages to pointvalues

we find cell-averages to be more suitable for discretization of kernels with integrable

singularity.
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Append_ A.

Let P denote the symmetric matrix

(A.la) P = H*H + G*G

where H and G are (3.4) and (3.9) respectively. A direct calculation shows that

(A.lb) Pij = p([i- Jl)

where for m integer

(A.lc) v(2m - 1) = o
k

Let us assume now that P is an invertible matrix.

that

It follows then from (3.8b)

(A.2a)

where

e k-a = p-apek-1 = p-I(H*H + G*G)e k-1 = p-IG*Gek-1

= p-aG*dk

(A.2b) d k = Ge k-1 •
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Replacing relation (3.11) by (A.2) we get that the encoding part (3.13b) of the

data compression algorithm (3.13) remains the same, but the decoding part (3.13d)

becomes

(A.3)
Do fork=L,L-1,..,1--]k-I = R-]k + p_lG,dk .

The orthogonality condition (2.4c) implies that

(A.4) P = p(0)r = f_t_r

which brings us back to (3.13d),

As an example for the nonorthogonal case let us consider the "hat function" _o(x)

(A.5a) _(x)-- { 0a- I_1 o{herwise0< I_1_ 1

which satisfies the dilation equation

(A.5b)
1

_o(x) = _[_o(2x - 1) + 2_0(2x) + _,(2x + 1)1.

In this case the only nonzero elements of P are

3 1

(A.6) Pi,, = _, Pi,i+2 = ]--_.

Thus P is diagonally dominant and hence invertible.
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Appendix B.

In this appendix we use the interpolation results of [5] and [6] in order to prove

convergence of the limiting process (5.5a) for cell-averages with the symmetric re-

construction (3.17).

Let /_ denote the matrix (3.5) corresponding to the central interpolation (3.14)

and let 6(x) denote the limit function in (5.5a). _(x) has its support in Ixl < r - 1

where r is the order of accuracy of the interpolation. For r = 2, _(x) is the "hat-

function" (5.4b) which is only Lipschitz-continuous; for r = 4, 6, _(x) is continuously

differentiable.

Let S m denote the "step-sequence"

0 j<_m-1S_= 1 j>m.

The limiting process corresponding to/_kS° is also convergent and we denote its

limit by ¢(x). Since

e = S O - S 1

we get that

(B.la) _(x) = q(z) - <(x- 1).

It is easy to see that

(B.lb)
0 x < -r+i

X-_2r-3_(_) = _t=o O(x- l) -_ + 1 _<• _<_ - 2

1 r-2<x

and thus if(x) has at least the same smoothness as _(x).
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We turn now to express the limiting process Rke for the reconstruction from

cell-averages (3.17) in terms of ((x). Prom (5.5c) and (2.11) we get that

(B.2a) (R'e)i = _(j2-') - 4((j - 1)2-')
2-k

Since ('(x) is continuous and of compact support we get that

(B.2b) r/(x) = lim _(R ke)j X[(j_02-,, j2-k](x) = ('(x)
k----* oo

J

and that the convergence is uniform in x. From (B.lb) it follows that r/(z) has its

support in -r + 1 < x < r - 2; from (B.la) and (B.2b) we get that r/(x) is related

to 0(x) by

(B.3) 0'(x) = - - 1).

We remark that for r = 2 we get for all k that

___(Rke)j X[(j_I)2-_, j2-_,](x) = _(x)

1

where _(x) is the "box-function" (2.8a) (note that the order of accuracy of the

reconstruction from the cell averages is r - 1). Thus r/(x) = _(x) and we get formal

pointwise convergence of (B.2b) although r/(z) is discontinuous.
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